Detail publikace

Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations

DIBLÍK, J.

Originální název

Integral criteria for the existence of positive solutions of first-order linear differential advanced-argument equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

A linear differential equation with advanced-argument $y'(t)-c(t)y(t+\tau)=0$ is considered where $c\colon [t_0,\infty)\to [0,\infty)$, $t_0\in \bR$ is a bounded and locally Lipschitz continuous function and $\tau>0$. The well-known explicit integral criterion $$ \int_{t}^{t+\tau}c(s)\,\diff s\le{1}/{\e}\,,\,\,\,t\in[t_0,\infty) $$ guarantees the existence of a positive solution on $[t_0,\infty)$. The paper derives new integral criteria involving the coefficient $c$. Their independence of the previous result is discussed as well.

Klíčová slova

Positive solution, advanced-argument, integral criterion.

Autoři

DIBLÍK, J.

Vydáno

31. 1. 2017

Nakladatel

Elsevier

ISSN

0893-9659

Periodikum

APPLIED MATHEMATICS LETTERS

Ročník

72

Číslo

10

Stát

Spojené státy americké

Strany od

40

Strany do

45

Strany počet

8

URL

BibTex

@article{BUT137192,
  author="Josef {Diblík}",
  title="Integral criteria for the existence of positive solutions
of  first-order linear differential advanced-argument equations",
  journal="APPLIED MATHEMATICS LETTERS",
  year="2017",
  volume="72",
  number="10",
  pages="40--45",
  doi="10.1016/j.aml.2016.07.016",
  issn="0893-9659",
  url="https://doi.org/10.1016/j.aml.2016.07.016"
}