Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J. OČENÁŠEK, J.
Originální název
ACCELERATED BAYESIAN OPTIMIZATION ALGORITHMS FOR ADVANCED HYPERGRAPH PARTITIONING, accepted paper
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper summarizes our recent work on the design, analysis and applications of the Bayesian optimization algorithm (BOA) and its advanced accelerated variants for solving complex - sometimes NP-complete - combinatorial optimization problems from circuit design. We review the methods for accelerating BOA for hypergraph-partitioning problem. The first method accelerates the convergence of sequential BOA by utilizing specific knowledge about the optimized problem and the second method is based on the parallel construction of a probabilistic model. In the experimental part we analyze the advantages of acceleration techniques and prove that BOA is able to solve hypergraph partitioning problems reliably, effectively, and without the need for specifying control parameters and encoding schemes as in recombination-based genetic algorithms.
Klíčová slova
Optimization problems, decomposition and allocation problems, graphical probabilistic model, Bayesian network, Bayesian-Dirichlet metric, Bayesian optimization algorithm, problem knowledge, parallelization, hypergraph partitioning.
Autoři
SCHWARZ, J.; OČENÁŠEK, J.
Rok RIV
2003
Vydáno
9. 5. 2003
Nakladatel
Faculty of Mechanical Engineering BUT
Místo
Brno
ISBN
80-214-2411-7
Kniha
Procceedings of MENDEL 2003
Strany od
133
Strany do
141
Strany počet
9
BibTex
@inproceedings{BUT13984, author="Josef {Schwarz} and Jiří {Očenášek}", title="ACCELERATED BAYESIAN OPTIMIZATION ALGORITHMS FOR ADVANCED HYPERGRAPH PARTITIONING, accepted paper", booktitle="Procceedings of MENDEL 2003", year="2003", pages="133--141", publisher="Faculty of Mechanical Engineering BUT", address="Brno", isbn="80-214-2411-7" }