Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VĚCHET, S., KREJSA, J.
Originální název
Continuous Q-learning application
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Standard algorithm of Q-Learning is limited by discrete states and actions and Q-function is usually represented as discrete table. To avoid this obstacle and extend the use of Q-learning for continuous states and actions the algorithm must be modified and such modification is presented in the paper. Straightforward way is to replace discrete table with suitable approximator. A number of approximators can be used, with respect to memory and computational requirements the local approximator is particularly favorable. We have used Locally Weighted Regression (LWR) algorithm. The paper discusses advantages and disadvantages of modified algorithm demonstrated on simple control task.
Klíčová slova
Q-learning, Machine learning, Locall approximators
Autoři
Rok RIV
2004
Vydáno
10. 5. 2004
Nakladatel
Institute of Thermonechanics Academy of Sciences of the Czech Republic, Prague 2004
Místo
Prague
ISBN
80-85918-88-9
Kniha
Engineering Mechanics 2004
Číslo edice
1
Strany od
307
Strany do
308
Strany počet
2
BibTex
@inproceedings{BUT14018, author="Stanislav {Věchet} and Jiří {Krejsa}", title="Continuous Q-learning application", booktitle="Engineering Mechanics 2004", year="2004", number="1", pages="2", publisher="Institute of Thermonechanics Academy of Sciences of the Czech Republic, Prague 2004", address="Prague", isbn="80-85918-88-9" }