Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MADĚRÁNKOVÁ, D. SEDLÁŘ, K. VÍTEK, M. ŠKUTKOVÁ, H.
Originální název
The identification of replication origin in bacterial genomes by cumulated phase signal
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The origin of replication (oriC) plays an important role in the cell cycle as the place where DNA replication is initiated. In bacterial cells, a single replication origin can be found and its correct identification is necessary in the annotation process of newly sequenced genomes. Although the rearrangement of a whole genome sequence according to oriC should be a standard procedure, public databases still contain lots of genomes starting at a random place. This situation complicates the comparative analysis of whole bacterial genomes as only two genomes rearranged according to oriC can be reliably aligned. In this paper, we present a novel technique for oriC prediction based exclusively on utilization of cumulated phase signal which distinguishes our approach from current techniques combining application of genomic signal processing techniques with a standard character based comparison. Proposed technique is therefore fast and suitably complements the current pipeline for comparison of whole bacterial genomes by aligned downsampled signals.
Klíčová slova
cumulated phase, origin of replication, oriC, genomic signal, bacteria
Autoři
MADĚRÁNKOVÁ, D.; SEDLÁŘ, K.; VÍTEK, M.; ŠKUTKOVÁ, H.
Vydáno
5. 10. 2017
Nakladatel
IEEE
ISBN
978-1-4673-8988-4
Kniha
2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
Strany od
267
Strany do
271
Strany počet
5
URL
http://ieeexplore.ieee.org/abstract/document/8058561/
BibTex
@inproceedings{BUT140330, author="Denisa {Maděránková} and Karel {Sedlář} and Martin {Vítek} and Helena {Vítková}", title="The identification of replication origin in bacterial genomes by cumulated phase signal", booktitle="2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)", year="2017", pages="267--271", publisher="IEEE", doi="10.1109/CIBCB.2017.8058561", isbn="978-1-4673-8988-4", url="http://ieeexplore.ieee.org/abstract/document/8058561/" }