Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MOSYURCHAK, A. VESELKOV, V. TURYGIN, A. HAMMER, M.
Originální název
PROGNOSIS OF BEHAVIOUR OF MACHINE TOOL SPINDLES, THEIR DIAGNOSTICS AND MAINTENANCE
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
The present article focuses on the use of neural networks to predict the behaviour of certain diagnostic parameters of spindles of machine tools. An online vibro-diagnostics is used, and from many specific measured parameters, the effective value of some variables in the time series. The results are used in the maintenance based on the technical condition, in particular, in preventive and proactive maintenance. This procedure is completely original and allows for better setting of maintenance policy, which is also beneficial for planning maintenance costs. The article also mentions the necessity to implement the steps described, also in the context of the Industry 4.0 initiative, and further, it briefly discussesprognostics, technical diagnostics, maintenance and maintenance systems. The used neural networks and the calculation procedure are also analysed. The conclusions obtained are evaluated.
Klíčová slova
Neural networks, prognosis of diagnostic parameters behaviour, machine tool spindle, preventive and proactive maintenance, maintenance system, Industry 4.0
Autoři
MOSYURCHAK, A.; VESELKOV, V.; TURYGIN, A.; HAMMER, M.
Vydáno
13. 12. 2017
Nakladatel
MM publishing, s.r.o. (2017)
Místo
ČR
ISSN
1805-0476
Periodikum
MM Science Journal
Číslo
5
Stát
Česká republika
Strany od
2100
Strany do
2104
Strany počet
4
URL
http://www.mmscience.eu/content/file/archives/MM_Science_201794.pdf
BibTex
@article{BUT142883, author="Andriy {Mosyurchak} and Vladimir {Veselkov} and Andrei {Turygin} and Miloš {Hammer}", title="PROGNOSIS OF BEHAVIOUR OF MACHINE TOOL SPINDLES, THEIR DIAGNOSTICS AND MAINTENANCE ", journal="MM Science Journal", year="2017", number="5", pages="2100--2104", doi="10.17973/MMSJ.2017\{_}12\{_}201794", issn="1805-0476", url="http://www.mmscience.eu/content/file/archives/MM_Science_201794.pdf" }