Detail publikace

SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation

SMÍŠEK, R. HEJČ, J. RONZHINA, M. NĚMCOVÁ, A. MARŠÁNOVÁ, L. CHMELÍK, J. KOLÁŘOVÁ, J. PROVAZNÍK, I. SMITAL, L. VÍTEK, M.

Originální název

SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Background: Smartphone-based ECG devices comprise great potential in screening for arrhythmias. However, its feasibility is limited by poor signal quality leading to incorrect rhythm classification. In this study, advanced method for automatic classification of normal rhythm (N), atrial fibrillation (A), other rhythm (O), and noisy records (P) is introduced. Methods: Two-step SVM approach followed by simple threshold based rules was used for data classification. In the first step, various features were derived from separate beats to represent particular events (normal as well as pathological and artefacts) in more detail. Output of the first classifier was used to calculate global features describing entire ECG. These features were then used to train the second classification model. Both classifiers were evaluated on training set via cross-validation technique, and additionally on hidden testing set. Results: In the Phase II of challenge, total F1 score of the method is 0.81 and 0.84 within hidden challenge dataset and training set, respectively. Particular F1 scores within hidden challenge dataset are 0.90 (N), 0.81 (A), 0.72 (O), and 0.55 (P). Particular F1 scores within training set are 0.91 (N), 0.85 (A), 0.76 (O), and 0.73 (P).

Klíčová slova

ECG, Atrial fibrilation, ECG classification

Autoři

SMÍŠEK, R.; HEJČ, J.; RONZHINA, M.; NĚMCOVÁ, A.; MARŠÁNOVÁ, L.; CHMELÍK, J.; KOLÁŘOVÁ, J.; PROVAZNÍK, I.; SMITAL, L.; VÍTEK, M.

Vydáno

28. 9. 2017

Místo

Rennes, France

ISBN

978-1-5090-0684-7

Kniha

Computing in Cardiology 2017

ISSN

0276-6574

Periodikum

Computers in Cardiology

Stát

Spojené státy americké

Strany od

1

Strany do

4

Strany počet

4

BibTex

@inproceedings{BUT143520,
  author="Radovan {Smíšek} and Jakub {Hejč} and Marina {Filipenská} and Andrea {Němcová} and Lucie {Šaclová} and Jiří {Chmelík} and Jana {Kolářová} and Valentine {Provazník} and Lukáš {Smital} and Martin {Vítek}",
  title="SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation",
  booktitle="Computing in Cardiology 2017",
  year="2017",
  journal="Computers in Cardiology",
  pages="1--4",
  address="Rennes, France",
  doi="10.22489/CinC.2017.172-200",
  isbn="978-1-5090-0684-7",
  issn="0276-6574"
}