Detail publikace

Structuring digital spaces by path-partition

ŠLAPAL, J.

Originální název

Structuring digital spaces by path-partition

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We study closure operators on graphs which are induced by path partitions, i.e., certain sets of paths of the same lengths in these graphs. We investigate connectedness with respect to the closure operators studied. In particular, the closure operators are discussed that are induced by path partitions of some natural graphs on the digital spaces Z^n, n > 0 a natural number. For the case n = 2, i.e., for the digital plane Z^2, the induced closure operators are shown to satisfy an analogue of the Jordan curve theorem which allows using them as convenient background structures for studying digital images.

Klíčová slova

Closure operator, path-partition in a graph, digital space.

Autoři

ŠLAPAL, J.

Vydáno

21. 3. 2017

Nakladatel

Springer Verlag

Místo

Berlin

ISBN

978-3-319-54608-7

Kniha

Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications

Edice

Lecture Notes in Computer Science

ISSN

0302-9743

Periodikum

Lecture Notes in Computer Science

Ročník

10149

Číslo

3

Stát

Spolková republika Německo

Strany od

43

Strany do

55

Strany počet

13

URL

BibTex

@inproceedings{BUT144421,
  author="Josef {Šlapal}",
  title="Structuring digital spaces by path-partition",
  booktitle="Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications",
  year="2017",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="10149",
  number="3",
  pages="43--55",
  publisher="Springer Verlag",
  address="Berlin",
  doi="10.1007/978-3-319-54609-4\{_}3",
  isbn="978-3-319-54608-7",
  issn="0302-9743",
  url="https://link.springer.com/chapter/10.1007/978-3-319-54609-4_3"
}