Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
WIGLASZ, M. SEKANINA, L.
Originální název
Evolutionary Approximation of Gradient Orientation Module in HOG-based Human Detection System
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan function, which is typically employed to compute the gradient orientations. When the best evolved approximations are integrated into the SW implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with the accurate implementation and the state-of-the-art approximate implementations.
Klíčová slova
Functional approximation, Cartesian genetic programming, Histogram of oriented gradients
Autoři
WIGLASZ, M.; SEKANINA, L.
Vydáno
14. 11. 2017
Nakladatel
IEEE Signal Processing Society
Místo
Montreal
ISBN
978-1-5090-5989-8
Kniha
2017 IEEE Global Conference on Signal and Information Processing GlobalSIP 2017
Strany od
1300
Strany do
1304
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11441/
BibTex
@inproceedings{BUT144438, author="Michal {Wiglasz} and Lukáš {Sekanina}", title="Evolutionary Approximation of Gradient Orientation Module in HOG-based Human Detection System", booktitle="2017 IEEE Global Conference on Signal and Information Processing GlobalSIP 2017", year="2017", pages="1300--1304", publisher="IEEE Signal Processing Society", address="Montreal", doi="10.1109/GlobalSIP.2017.8309171", isbn="978-1-5090-5989-8", url="https://www.fit.vut.cz/research/publication/11441/" }