Detail publikace

Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies

BASKAR, M. KARAFIÁT, M. BURGET, L. VESELÝ, K. GRÉZL, F. ČERNOCKÝ, J.

Originální název

Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Training deep recurrent neural network (RNN) architectures iscomplicated due to the increased network complexity. This disruptsthe learning of higher order abstracts using deep RNN. Incase of feed-forward networks training deep structures is simpleand faster while learning long-term temporal information isnot possible. In this paper we propose a residual memory neuralnetwork (RMN) architecture to model short-time dependenciesusing deep feed-forward layers having residual and time delayedconnections. The residual connection paves way to constructdeeper networks by enabling unhindered flow of gradientsand the time delay units capture temporal information withshared weights. The number of layers in RMN signifies both thehierarchical processing depth and temporal depth. The computationalcomplexity in training RMN is significantly less whencompared to deep recurrent networks. RMN is further extendedas bi-directional RMN (BRMN) to capture both past and futureinformation. Experimental analysis is done on AMI corpus tosubstantiate the capability of RMN in learning long-term informationand hierarchical information. Recognition performanceof RMN trained with 300 hours of Switchboard corpus is comparedwith various state-of-the-art LVCSR systems. The resultsindicate that RMN and BRMN gains 6 % and 3.8 % relativeimprovement over LSTM and BLSTM networks.

Klíčová slova

Automatic speech recognition, LSTM, RNN,Residual memory networks.

Autoři

BASKAR, M.; KARAFIÁT, M.; BURGET, L.; VESELÝ, K.; GRÉZL, F.; ČERNOCKÝ, J.

Vydáno

5. 3. 2017

Nakladatel

IEEE Signal Processing Society

Místo

New Orleans

ISBN

978-1-5090-4117-6

Kniha

Proceedings of ICASSP 2017

Strany od

4810

Strany do

4814

Strany počet

5

URL

BibTex

@inproceedings{BUT144448,
  author="Murali Karthick {Baskar} and Martin {Karafiát} and Lukáš {Burget} and Karel {Veselý} and František {Grézl} and Jan {Černocký}",
  title="Residual Memory Networks: Feed-forward approach to learn long-term temporal dependencies",
  booktitle="Proceedings of ICASSP 2017",
  year="2017",
  pages="4810--4814",
  publisher="IEEE Signal Processing Society",
  address="New Orleans",
  doi="10.1109/ICASSP.2017.7953070",
  isbn="978-1-5090-4117-6",
  url="https://www.fit.vut.cz/research/publication/11467/"
}

Dokumenty