Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Walk-set induced connectedness in digital spaces
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z^2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z^2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z^2 for the study of digital images.
Klíčová slova
Simple graph, strong product, walk, connectedness, digital space, Jordan curve theorem
Autoři
Vydáno
1. 9. 2017
ISSN
1584-2851
Periodikum
Carpathian Journal of Mathematics
Ročník
33
Číslo
2
Stát
Rumunsko
Strany od
247
Strany do
256
Strany počet
10
URL
http://carpathian.ubm.ro
BibTex
@article{BUT144498, author="Josef {Šlapal}", title="Walk-set induced connectedness in digital spaces", journal="Carpathian Journal of Mathematics", year="2017", volume="33", number="2", pages="247--256", issn="1584-2851", url="http://carpathian.ubm.ro" }