Detail publikace

Terse walk sets in graphs and induced closure operators

ŠLAPAL, J.

Originální název

Terse walk sets in graphs and induced closure operators

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Given a graph G, for every ordinal a > 1, we introduce and study closure operators on G induced by sets of a-indexed walks. For such sets, we define a property called terseness and investigate how it affects the induced closure operators. We show, among others, that the induction, if regarded as a map, is one-to-one for terse walk sets. We also determine a poset of closure operators (on a given graph) that is a direct limit of a direct system of sets of terse a-indexed walks ordered by set inclusion for certain ordinals a > 1. Possible applications of the closure operators studied in digital topology are indicated.

Klíčová slova

Simple graph, alpha-walk, terse walk set, closure operator, direct limit

Autoři

ŠLAPAL, J.

Vydáno

1. 3. 2017

ISSN

0166-8641

Periodikum

Topology and its Applications

Ročník

230

Číslo

1

Stát

Nizozemsko

Strany od

258

Strany do

266

Strany počet

9

URL

BibTex

@article{BUT144499,
  author="Josef {Šlapal}",
  title="Terse walk sets in graphs and induced closure operators",
  journal="Topology and its Applications",
  year="2017",
  volume="230",
  number="1",
  pages="258--266",
  doi="10.1016/j.topol.2017.08.046",
  issn="0166-8641",
  url="https://www.fit.vut.cz/research/publication/11591/"
}