Detail publikace

Asymptotic properties of solutions of the difference equation \Delta x(t)=-ax(t)+bx(\tau(t))

KUNDRÁT, P.

Originální název

Asymptotic properties of solutions of the difference equation \Delta x(t)=-ax(t)+bx(\tau(t))

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In this paper we derive the asymptotic bounds of all solutions of the delay difference equation \Delta x(t)=-ax(t)+bx(\tau(t)), t\in[t_0,infinity) with real constants a>0, b\neq 0. This equation is obtained via the discretization of a delay differential equation and we show the resemblance in the asymptotic bounds of both equations.

Klíčová slova

difference equation, delayed argument, asymptotic behaviour

Autoři

KUNDRÁT, P.

Rok RIV

2005

Vydáno

1. 1. 2005

Nakladatel

Chapman & Hall

Místo

Boca Raton

ISBN

1-58488-536-X

Kniha

Proceedings of the Eighth International Conference on Difference Equations and Applications

Strany od

193

Strany do

200

Strany počet

8

BibTex

@inproceedings{BUT14717,
  author="Petr {Tomášek}",
  title="Asymptotic properties of solutions of the difference equation \Delta x(t)=-ax(t)+bx(\tau(t))",
  booktitle="Proceedings of the Eighth International Conference on Difference Equations and Applications",
  year="2005",
  pages="8",
  publisher="Chapman & Hall",
  address="Boca Raton",
  isbn="1-58488-536-X"
}