Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DUŠEK, J. MIKULKA, J. VÉJAR, A. RYMARCZYK, T.
Originální název
Convergence error exploration for electrical impedance tomography problems with open and closed domains
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A fundamental part of the design of electrical impedance tomography (EIT) experiments is the selection of the structure of the computational mesh. Individual mesh elements are required to be sufficiently small to recover the behavior stated on the partial differential equations (PDE) EIT model. On the contrary, mesh elements needs to be not so small to fit the computation constraints of modern hardware. The target is to allow a fast iterative execution of the PDE model as performed by many optimization schemes. The estimation of the error over a reference mesh size is an important factor to compare with the total computation time for mesh generation, forward model evaluation, and tomographic inversion. In this work, we analyze the a posteriori convergence of EIT image reconstruction algorithms with respect to the mesh element size and computation time for open and closed domains. The tomographic inversion error is estimated using Euclidean and Jaccard distances for the output images.
Klíčová slova
Electrical impedance tomography; inverse problem; error convergence; finite element method
Autoři
DUŠEK, J.; MIKULKA, J.; VÉJAR, A.; RYMARCZYK, T.
Vydáno
12. 5. 2018
Místo
Swinoujscie, Polsko
ISBN
978-83-7663-250-6
Kniha
Proceedings of IIPhDW 2018 in Swinouscie
Strany od
39
Strany do
44
Strany počet
6
URL
https://ieeexplore.ieee.org/document/8388241
BibTex
@inproceedings{BUT147550, author="Jan {Dušek} and Jan {Mikulka} and Andrés {Véjar} and Tomasz {Rymarczyk}", title="Convergence error exploration for electrical impedance tomography problems with open and closed domains", booktitle="Proceedings of IIPhDW 2018 in Swinouscie", year="2018", pages="39--44", address="Swinoujscie, Polsko", doi="10.1109/IIPHDW.2018.8388241", isbn="978-83-7663-250-6", url="https://ieeexplore.ieee.org/document/8388241" }