Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
OPLUŠTIL, Z.
Originální název
Oscillatory properties of certain system of non-linear ordinary differential equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider certain two-dimensional system of non-linear differential equations u'=g(t)|v|^(1/A)sgn v v'=-p(t)|u|^(A) sgn u, where A is a positive number, g,p are locally integrable functions (g is non-negative). In the case when coefficient g is not inegrable on the half-line, the considered system has been widely studied in particular cases such linear systems as well as second order linear and half-linear differential equations. However, the case when function g is integrable on the hlaf-line has not been studied in detail in the existing literature. Moreover, we allow that the coefficient g can have zero points in any neigh- bourhood of infinity and consequently, considered system can not be rewritten as the second order linear or half-linear differential equation in this case. In the paper, new oscillation criteria are established in the case when function g is integrable on the hlaf-line and without restricted assumption function p preserves its sign (which is usually considered).
Klíčová slova
Two-dimensional system of non-linear differential equations; oscillatory criteria, half-linear differential equation
Autoři
Vydáno
18. 7. 2018
ISSN
1787-2413
Periodikum
Miskolc Mathematical Notes (electronic version)
Ročník
19
Číslo
1
Stát
Maďarsko
Strany od
439
Strany do
459
Strany počet
21
BibTex
@article{BUT149261, author="Zdeněk {Opluštil}", title="Oscillatory properties of certain system of non-linear ordinary differential equations", journal="Miskolc Mathematical Notes (electronic version)", year="2018", volume="19", number="1", pages="439--459", doi="10.18514/MMN.2018.2391", issn="1787-2413" }