Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. MEDINA, R.
Originální název
Exact asymptotics of positive solutions to Dickman equation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper considers the Dickman equation. The number theory uses what is called a Dickman (or Dickman -de Bruijn) function, which is the solution to this equation defined by an initial function x(t)=1 if 0≤t≤1. The Dickman equation has two classes of asymptotically different positive solutions. The paper investigates their asymptotic behaviors in detail. A structure formula describing the asymptotic behavior of all solutions to the Dickman equation is given, an improvement of the well-known asymptotic behavior of the Dickman function, important in number theory, is derived and the problem of whether a given initial function defines dominant or subdominant solution is dealt with
Klíčová slova
Dickman equation; positive solution; dominant solution; subdominant solution; large time behavior; asymptotic representation; delayed differential equation.
Autoři
DIBLÍK, J.; MEDINA, R.
Vydáno
15. 1. 2018
Nakladatel
Americal Institute of Mathematical Sciences
ISSN
1553-524X
Periodikum
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
Ročník
23
Číslo
1
Stát
Spojené státy americké
Strany od
101
Strany do
121
Strany počet
21
URL
http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14695
BibTex
@article{BUT149494, author="Josef {Diblík} and Rigoberto {Medina}", title="Exact asymptotics of positive solutions to Dickman equation", journal="DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B", year="2018", volume="23", number="1", pages="101--121", doi="10.3934/dcdsb.2018007", issn="1553-524X", url="http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14695" }