Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MUCHA, J. MEKYSKA, J. GALÁŽ, Z. FAÚNDEZ ZANUY, M. LOPEZ-DE-IPINA, K. ZVONČÁK, V. KISKA, T. SMÉKAL, Z. BRABENEC, L. REKTOROVÁ, I.
Originální název
Identification and Monitoring of Parkinson’s Disease Dysgraphia Based on Fractional-Order Derivatives of Online Handwriting
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Parkinson’s disease dysgraphia affects the majority of Parkinson’s disease (PD) patients and is the result of handwriting abnormalities mainly caused by motor dysfunctions. Several effective approaches to quantitative PD dysgraphia analysis, such as online handwriting processing, have been utilized. In this study, we aim to deeply explore the impact of advanced online handwriting parameterization based on fractional-order derivatives (FD) on the PD dysgraphia diagnosis and its monitoring. For this purpose, we used 33 PD patients and 36 healthy controls from the PaHaW (PD handwriting database). Partial correlation analysis (Spearman’s and Pearson’s) was performed to investigate the relationship between the newly designed features and patients’ clinical data. Next, the discrimination power of the FD features was evaluated by a binary classification analysis. Finally, regression models were trained to explore the new features’ ability to assess the progress and severity of PD. These results were compared to a baseline, which is based on conventional online handwriting features. In comparison with the conventional parameters, the FD handwriting features correlated more significantly with the patients’ clinical characteristics and provided a more accurate assessment of PD severity (error around 12%). On the other hand, the highest classification accuracy (ACC = 97.14%) was obtained by the conventional parameters. The results of this study suggest that utilization of FD in combination with properly selected tasks (continuous and/or repetitive, such as the Archimedean spiral) could improve computerized PD severity assessment
Klíčová slova
Parkinson’s disease dysgraphia; micrographia; online handwriting; kinematic analysis; fractional-order derivative; fractional calculus;
Autoři
MUCHA, J.; MEKYSKA, J.; GALÁŽ, Z.; FAÚNDEZ ZANUY, M.; LOPEZ-DE-IPINA, K.; ZVONČÁK, V.; KISKA, T.; SMÉKAL, Z.; BRABENEC, L.; REKTOROVÁ, I.
Vydáno
11. 1. 2019
Nakladatel
MDPI
ISSN
2076-3417
Periodikum
Applied Sciences - Basel
Ročník
8
Číslo
12
Stát
Švýcarská konfederace
Strany od
1
Strany do
18
Strany počet
URL
https://www.mdpi.com/2076-3417/8/12/2566
Plný text v Digitální knihovně
http://hdl.handle.net/11012/137218
BibTex
@article{BUT151716, author="Ján {Mucha} and Jiří {Mekyska} and Zoltán {Galáž} and Marcos {Faúndez Zanuy} and Karmele {Lopez-de-Ipina} and Vojtěch {Zvončák} and Tomáš {Kiska} and Zdeněk {Smékal} and Luboš {Brabenec} and Irena {Rektorová}", title="Identification and Monitoring of Parkinson’s Disease Dysgraphia Based on Fractional-Order Derivatives of Online Handwriting", journal="Applied Sciences - Basel", year="2019", volume="8", number="12", pages="1--18", doi="10.3390/app8122566", issn="2076-3417", url="https://www.mdpi.com/2076-3417/8/12/2566" }
Dokumenty
applsci-08-02566.pdf