Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ZUTH, D. MARADA, T.
Originální název
Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with the comparison of the success rate of classification models from Matlab Classification Learner app. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the vibrodiagnostics model. Five basic faults are recognized, namely, the static unbalances at two levels, the dynamic unbalances at two levels and the faultless state. The data is then processed and reduced for the use of the Matlab Classification Learner app, which creates a model for recognizing faults. The aim of the paper is to compare the success rate of classification models when the data source is dataset in time or frequency domain.
Klíčová slova
Vibrodiagnostics, Neuron Network, Classification Learner app, Machine Learning, Matlab, Classification Model, Static Unbalance, Dynamic Unbalance
Autoři
ZUTH, D.; MARADA, T.
Vydáno
5. 12. 2018
ISBN
978-80-214-5543-6
Kniha
Mechatronika 2018
Strany od
482
Strany do
487
Strany počet
6
BibTex
@inproceedings{BUT151762, author="Daniel {Zuth} and Tomáš {Marada}", title="Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data", booktitle="Mechatronika 2018", year="2018", pages="482--487", isbn="978-80-214-5543-6" }