Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VESELÝ, K. PERALES, C. SZŐKE, I. LUQUE, J. ČERNOCKÝ, J.
Originální název
Lightly supervised vs. semi-supervised training of acoustic model on Luxembourgish for low-resource automatic speech recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, we focus on exploiting inexpensive data in order to to improve the DNN acoustic model for ASR. We explore two strategies: The first one uses untranscribed data from the target domain. The second one is related to the proper selection of excerpts from imperfectly transcribed out-of-domain public data, as parliamentary speeches. We found out that both approaches lead to similar results, making them equally beneficial for practical use. The Luxembourgish ASR seed system had a 38.8% WER and it improved by roughly 4% absolute, leading to 34.6% for untranscribed and 34.9% for lightlysupervised data. Adding both databases simultaneously led to 34.4% WER, which is only a small improvement. As a secondary research topic, we experiment with semi-supervised state-level minimum Bayes risk (sMBR) training. Nonetheless, for sMBR we saw no improvement from adding the automatically transcribed target data, despite that similar techniques yield good results in the case of cross-entropy (CE) training.
Klíčová slova
Luxembourgish, call centers, speech recognition, low-resourced ASR, unsupervised training
Autoři
VESELÝ, K.; PERALES, C.; SZŐKE, I.; LUQUE, J.; ČERNOCKÝ, J.
Vydáno
2. 9. 2018
Nakladatel
International Speech Communication Association
Místo
Hyderabad
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2018
Číslo
9
Stát
Francouzská republika
Strany od
2883
Strany do
2887
Strany počet
5
URL
https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2361.html
BibTex
@inproceedings{BUT155104, author="VESELÝ, K. and PERALES, C. and SZŐKE, I. and LUQUE, J. and ČERNOCKÝ, J.", title="Lightly supervised vs. semi-supervised training of acoustic model on Luxembourgish for low-resource automatic speech recognition", booktitle="Proceedings of Interspeech 2018", year="2018", journal="Proceedings of Interspeech", volume="2018", number="9", pages="2883--2887", publisher="International Speech Communication Association", address="Hyderabad", doi="10.21437/Interspeech.2018-2361", issn="1990-9772", url="https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2361.html" }