Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠENK, J. LÁZNIČKOVÁ, I. JAKUBOVÁ, I. COUFAL, O.
Originální název
Application of the Designed Model of the Blasted Electric Arc under Various Argon Flow Rate
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The designed mathematical model of the intensively blasted electric arc burning inside the arc heater anode channel is based on the energy and mass conservation laws and Ohm’s law. With the aim of decreasing the computational burden and making the model easy to understand for students, simplifying presumptions are included. Validity of them could be impaired when the model is applied with experimental data obtained under very different operational conditions. Thus, verification of the model should be made with the data measured in a wide range of gas flow rate, input power, radius and length of the anode channel, etc. In this contribution, attention is focused on the influence of the working gas flow rate, which is crucial for cooling and stabilization of the arc. Axial distributions of the arc temperature, radius and potential drop are computed for two argon flow rates differing by 100 percent, with other operational conditions unchanged. The results are illustrated in figures and discussed.
Klíčová slova
electric arc; argon; flow rate; modelling; measurement
Autoři
ŠENK, J.; LÁZNIČKOVÁ, I.; JAKUBOVÁ, I.; COUFAL, O.
Vydáno
15. 5. 2019
Nakladatel
VSB-Technical University of Ostrava, CR
Místo
Ostrava, CR
ISBN
978-1-7281-1333-3
Kniha
Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering (EPE)
Strany od
1
Strany do
6
Strany počet
BibTex
@inproceedings{BUT157024, author="Josef {Šenk} and Ilona {Lázničková} and Ivana {Jakubová} and Oldřich {Coufal}", title="Application of the Designed Model of the Blasted Electric Arc under Various Argon Flow Rate", booktitle="Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering (EPE)", year="2019", pages="1--6", publisher="VSB-Technical University of Ostrava, CR", address="Ostrava, CR", doi="10.1109/EPE.2019.8778030", isbn="978-1-7281-1333-3" }