Detail publikace

On elliptic curves with a closed component passing through a hexagon

KUREŠ, M.

Originální název

On elliptic curves with a closed component passing through a hexagon

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In general, there exists an ellipse passing through the vertices of a convex pentagon, but there is no ellipse passing through the vertices of a convex hexagon. Thus, attention is turned to algebraic curves of the third degree, namely to the closed component of certain elliptic curves. This closed curve will be called the spekboom curve. Results of numerical experiments and some hypotheses regarding hexagons of special shape connected with the existence of this curve passing through the vertices are presented and suggested. Some properties of the spekboom curve are described, too.

Klíčová slova

algebraic closed curves, elliptic curve, hexagon

Autoři

KUREŠ, M.

Vydáno

1. 6. 2019

Nakladatel

Ovidius University

Místo

Constanta

ISSN

1224-1784

Periodikum

Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica

Ročník

27

Číslo

2

Stát

Rumunsko

Strany od

67

Strany do

82

Strany počet

16

URL

Plný text v Digitální knihovně

BibTex

@article{BUT157202,
  author="Miroslav {Kureš}",
  title="On elliptic curves with a closed component passing through a hexagon",
  journal="Analele Stiintifice Ale Universitatii  Ovidius Constanta, Seria Matematica",
  year="2019",
  volume="27",
  number="2",
  pages="67--82",
  doi="10.2478/auom-2019-0019",
  issn="1224-1784",
  url="http://www.anstuocmath.ro/mathematics/anale2019vol2/03_Kures.pdf"
}