Detail publikace
BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional Transformers
FAJČÍK, M. BURGET, L. SMRŽ, P.
Originální název
BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional Transformers
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper describes our system submitted to SemEval 2019 Task 7: RumourEval 2019: Determining Rumour Veracity and Support for Rumours, Subtask A (Gorrell et al., 2019). The challenge focused on classifying whether posts from Twitter and Reddit support, deny, query, or comment a hidden rumour, truthfulness of which is the topic of an underlying discussion thread. We formulate the problem as a stance classification, determining the rumour stance of a post with respect to the previous thread post and the source thread post. The recent BERT architecture was employed to build an end-to-end system which has reached the F1 score of 61.67 % on the provided test data. Without any hand-crafted feature, the system finished at the 2nd place in the competition, only 0.2 % behind the winner.
Klíčová slova
rumour stance, hidden rumour stance, BERT, transformer, classification, stance classification, twitter post classification, reddit post classification, thread post classification, semeval, rumoureval
Autoři
FAJČÍK, M.; BURGET, L.; SMRŽ, P.
Vydáno
26. 6. 2019
Nakladatel
Association for Computational Linguistics
Místo
Minneapolis, Minnesota
ISBN
978-1-950737-06-2
Kniha
Proceedings of the 13th International Workshop on Semantic Evaluation
Strany od
1097
Strany do
1104
Strany počet
8
URL
BibTex
@inproceedings{BUT158076,
author="Martin {Fajčík} and Lukáš {Burget} and Pavel {Smrž}",
title="BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional Transformers",
booktitle="Proceedings of the 13th International Workshop on Semantic Evaluation",
year="2019",
pages="1097--1104",
publisher="Association for Computational Linguistics",
address="Minneapolis, Minnesota",
isbn="978-1-950737-06-2",
url="https://aclweb.org/anthology/papers/S/S19/S19-2192/"
}