Detail publikace

Fast Automatic Tuning of a Synthetic Inductor for Automotive Transformer-less Ultrasonic Sensor in Park Assist Systems

LEDVINA, J. HORSKÝ, P. VYKYDAL, L.

Originální název

Fast Automatic Tuning of a Synthetic Inductor for Automotive Transformer-less Ultrasonic Sensor in Park Assist Systems

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This work presents a novel shunt tuning method suitable for transformer-less ultrasonic sensors in park assist systems. The method enables tuning of an inductive part of LR shunt, which is used for a transducer damping. The method relies on knowledge of a transducer own serial resonance frequency and measurement of a parallel resonance frequency, which corresponds to the transducer parasitic capacity and shunt inductance. From the ratio of these two resonance frequencies the method predicts how the inductance must be tuned to achieve optimal damping performance. To enable measurement of the parallel resonance frequency inductance scaling by a factor of four is employed. The scaled inductance shifts the parallel resonance frequency away from the serial resonance frequency and thus distinguishes them. The presented work is supported by practical experiments using a fabricated test chip with a tunable synthetic inductor that confirms its performance and shows improvements compared to previous solutions without adaptive tuning mechanisms.

Klíčová slova

Acoustic sensors; Adaptive algorithms; Sonar navigation; Tuned circuits; Ultrasonic transducers

Autoři

LEDVINA, J.; HORSKÝ, P.; VYKYDAL, L.

Vydáno

31. 7. 2019

ISSN

1530-437X

Periodikum

IEEE SENSORS JOURNAL

Ročník

19

Číslo

22

Stát

Spojené státy americké

Strany od

10568

Strany do

10573

Strany počet

6

URL

BibTex

@article{BUT158177,
  author="Jan {Ledvina} and Pavel {Horský} and Lukáš {Vykydal}",
  title="Fast Automatic Tuning of a Synthetic Inductor for Automotive Transformer-less Ultrasonic Sensor in Park Assist Systems",
  journal="IEEE SENSORS JOURNAL",
  year="2019",
  volume="19",
  number="22",
  pages="10568--10573",
  doi="10.1109/JSEN.2019.2932300",
  issn="1530-437X",
  url="https://ieeexplore.ieee.org/document/8782544"
}