Detail publikace

Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures

CRISTEA, I. KOCIJAN, J. NOVÁK, M.

Originální název

Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The aim of this paper is to study, from an algebraic point of view, the properties of interdependencies between sets of elements (i.e., pieces of secrets, atmospheric variables, etc.) that appear in various natural models, by using the algebraic hyperstructure theory. Starting from specific examples, we first define the relation of dependence and study its properties, and then, we construct various hyperoperations based on this relation. We prove that two of the associated hypergroupoids are Hv-groups, while the other two are, in some particular cases, only partial hypergroupoids. Besides, the extensivity and idempotence property are studied and related to the cyclicity. The second goal of our paper is to provide a new interpretation of the dependence relation by using elements of the theory of algebraic hyperstructures.

Klíčová slova

hyperoperation; hypergroupoid; dependence relation; influence; impact

Autoři

CRISTEA, I.; KOCIJAN, J.; NOVÁK, M.

Vydáno

23. 9. 2019

Nakladatel

MDPI

ISSN

2227-7390

Periodikum

Mathematics

Ročník

7

Číslo

10

Stát

Švýcarská konfederace

Strany od

1

Strany do

4

Strany počet

14

URL

Plný text v Digitální knihovně

BibTex

@article{BUT158840,
  author="Irina {Cristea} and Juš {Kocijan} and Michal {Novák}",
  title="Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures",
  journal="Mathematics",
  year="2019",
  volume="7",
  number="10",
  pages="1--4",
  doi="10.3390/math7100885",
  issn="2227-7390",
  url="https://www.mdpi.com/2227-7390/7/10/885"
}