Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BIOLEK, Z. BIOLEK, D. BIOLKOVÁ, V.
Originální název
Lagrangian for circuits with higher-order elements
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (alpha,beta) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called -diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of elements of the L or +R types minus the sum of the state functions of elements of the C or -R types. The equations of motion generated by this Lagrangian are always of even-order. If all elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua’s table.
Klíčová slova
Hamilton’s variational principle; higher-order element; memristor; Lagrangian; Chua’s table; Euler-Lagrange equation
Autoři
BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.
Vydáno
29. 10. 2019
Nakladatel
MDPI
Místo
Basel, Switzerland
ISSN
1099-4300
Periodikum
ENTROPY
Ročník
21
Číslo
11
Stát
Švýcarská konfederace
Strany od
1
Strany do
19
Strany počet
URL
https://www.mdpi.com/1099-4300/21/11/1059
Plný text v Digitální knihovně
http://hdl.handle.net/11012/180820
BibTex
@article{BUT159543, author="Zdeněk {Biolek} and Dalibor {Biolek} and Viera {Biolková}", title="Lagrangian for circuits with higher-order elements", journal="ENTROPY", year="2019", volume="21", number="11", pages="1--19", doi="10.3390/e21111059", issn="1099-4300", url="https://www.mdpi.com/1099-4300/21/11/1059" }