Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÝ, O. PLCHOT, O. GLEMBEK, O. BURGET, L. MATĚJKA, P.
Originální název
Discriminatively Re-trained i-Vector Extractor For Speaker Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work we revisit discriminative training of the i-vector extractor component in the standard speaker verification (SV) system. The motivation of our research lies in the robustness and stability of this large generative model, which we want to preserve, and focus its power towards any intended SV task. We show that after generative initialization of the i-vector extractor, we can further refine it with discriminative training and obtain i-vectors that lead to better performance on various benchmarks representing different acoustic domains.
Klíčová slova
i-vectors, i-vector extractor, speaker recogni-tion, speaker verification, discriminative training
Autoři
NOVOTNÝ, O.; PLCHOT, O.; GLEMBEK, O.; BURGET, L.; MATĚJKA, P.
Vydáno
12. 5. 2019
Nakladatel
IEEE Signal Processing Society
Místo
Brighton
ISBN
978-1-5386-4658-8
Kniha
Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
Strany od
6031
Strany do
6035
Strany počet
5
URL
https://ieeexplore.ieee.org/document/8682590
BibTex
@inproceedings{BUT160000, author="Ondřej {Novotný} and Oldřich {Plchot} and Ondřej {Glembek} and Lukáš {Burget} and Pavel {Matějka}", title="Discriminatively Re-trained i-Vector Extractor For Speaker Recognition", booktitle="Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)", year="2019", pages="6031--6035", publisher="IEEE Signal Processing Society", address="Brighton", doi="10.1109/ICASSP.2019.8682590", isbn="978-1-5386-4658-8", url="https://ieeexplore.ieee.org/document/8682590" }