Detail publikace

On the number of arbitrary parameters in the general solution to a weakly delayed planar linear discrete system with constant coefficients

HALFAROVÁ, H. DIBLÍK, J. ŠAFAŘÍK, J.

Originální název

On the number of arbitrary parameters in the general solution to a weakly delayed planar linear discrete system with constant coefficients

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

A planar linear discrete system with constant coefficients and two delays x(k + 1) = Ax(k) + Bx(k − m) + Cx(k − n) is considered where k ∈ Z. It is assumed that the system is weakly delayed and the eigenvalues of the matrix A are real and different. The formula for a general solution of the system is well-known and depends on 2(m + 1) initial values. This formula can be simplified to depend only on 2 arbitrary constants. A relation between the initial values and new arbitrary constants is given.

Klíčová slova

planar linear discrete system; constant coefficients; two delays; initial values

Autoři

HALFAROVÁ, H.; DIBLÍK, J.; ŠAFAŘÍK, J.

Vydáno

24. 11. 2020

Nakladatel

American Institute of Physics

Místo

Melville (USA)

ISBN

978-0-7354-4025-8

Kniha

Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2019 (ICNAAM-2019)

ISSN

0094-243X

Periodikum

AIP conference proceedings

Ročník

2293

Číslo

1

Stát

Spojené státy americké

Strany od

340008-1

Strany do

340008-4

Strany počet

4

URL