Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MRÁZEK, V. SEKANINA, L. DOBAI, R. SÝS, M. ŠVENDA, P.
Originální název
Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Randomness testing is an important procedure that bit streams, produced by critical cryptographic primitives such as encryption functions and hash functions, have to undergo. In this paper, a new hardware platform for randomness testing is proposed. The platform exploits the principles of genetic programming, which is a machine learning technique developed for automated program and circuit design. The platform is capable of evolving efficient randomness distinguishers directly on a chip. Each distinguisher is represented as a Boolean polynomial in the Algebraic Normal Form. Randomness testing is conducted for bit streams that are either stored in an on-chip memory or generated by a circuit placed on the chip. The platform is developed with a Xilinx Zynq-7000 All Programmable System on Chip which integrates a field programmable gate array with on-chip ARM processors. The platform is evaluated in terms of the quality of randomness testing, performance and resources utilization. With power budget less than 3 W, the platform provides comparable randomness testing capabilities with the standard testing batteries running on a personal computer.
Klíčová slova
randomness testing, evolvable hardware, FPGA
Autoři
MRÁZEK, V.; SEKANINA, L.; DOBAI, R.; SÝS, M.; ŠVENDA, P.
Vydáno
22. 11. 2019
ISSN
1063-8210
Periodikum
IEEE Trans. on VLSI Systems.
Ročník
27
Číslo
12
Stát
Spojené státy americké
Strany od
2734
Strany do
2744
Strany počet
11
URL
https://www.fit.vut.cz/research/publication/11687/
BibTex
@article{BUT161411, author="Vojtěch {Mrázek} and Lukáš {Sekanina} and Roland {Dobai} and Marek {Sýs} and Petr {Švenda}", title="Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques", journal="IEEE Trans. on VLSI Systems.", year="2019", volume="27", number="12", pages="2734--2744", doi="10.1109/TVLSI.2019.2923848", issn="1063-8210", url="https://www.fit.vut.cz/research/publication/11687/" }