Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČEŠKA, M. HENSE, C. JUNGES, S. KATOEN, J.
Originální název
Counterexample-Driven Synthesis for Probabilistic Program Sketches
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Probabilistic programs are key to deal with uncertainty in, e.g., controller synthesis. They are typically small but intricate. Their development is complex and error prone requiring quantitative reasoning over a myriad of alternative designs. To mitigate this complexity, we adopt counterexample-guided inductive synthesis (CEGIS) to automatically synthesise nite-state probabilistic programs. Our approach leverages efficient model checking, modern SMT solving, and counterexample generation at program level. Experiments on practically relevant case studies show that design spaces with millions of candidate designs can be fully explored using a few thousand verification queries.
Klíčová slova
probabilistic programs, synthesis, counter-examples, SMT solving
Autoři
ČEŠKA, M.; HENSE, C.; JUNGES, S.; KATOEN, J.
Vydáno
17. 6. 2019
Nakladatel
Springer International Publishing
Místo
Porto
ISBN
978-3-030-30941-1
Kniha
Proceedings of the 23rd International Symposium on Formal Methods.
Edice
Lecture Notes of Computer Science
Strany od
101
Strany do
120
Strany počet
19
BibTex
@inproceedings{BUT161455, author="ČEŠKA, M. and HENSE, C. and JUNGES, S. and KATOEN, J.", title="Counterexample-Driven Synthesis for Probabilistic Program Sketches", booktitle="Proceedings of the 23rd International Symposium on Formal Methods.", year="2019", series="Lecture Notes of Computer Science", pages="101--120", publisher="Springer International Publishing", address="Porto", doi="10.1007/978-3-030-30942-8\{_}8", isbn="978-3-030-30941-1" }