Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠPAŇHEL, J. SOCHOR, J. JURÁNEK, R. DOBEŠ, P. BARTL, V. HEROUT, A.
Originální název
Learning Feature Aggregation in Temporal Domain for Re-Identification
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Person re-identification is a standard and established problem in the computer vision community. In recent years, vehicle re-identification is also getting more attention. In this paper, we focus on both these tasks and propose a method for aggregation of features in temporal domain as it is common to have multiple observations of the same object. The aggregation is based on weighting different elements of the feature vectors by different weights and it is trained in an end-to-end manner by a Siamese network. The experimental results show that our method outperforms other existing methods for feature aggregation in temporal domain on both vehicle and person re-identification tasks. Furthermore, to push research in vehicle re-identification further, we introduce a novel dataset CarsReId74k. The dataset is not limited to frontal/rear viewpoints. It contains 17,681 unique vehicles, 73,976 observed tracks, and 277,236 positive pairs. The dataset was captured by 66 cameras from various angles.
Klíčová slova
person re-identification, vehicle re-identification, feature aggregation, temporal domain, neural network, traffic surveillance
Autoři
ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; DOBEŠ, P.; BARTL, V.; HEROUT, A.
Vydáno
2. 3. 2020
Nakladatel
Elsevier Science
Místo
Amsterdam
ISSN
1077-3142
Periodikum
COMPUTER VISION AND IMAGE UNDERSTANDING
Ročník
192
Číslo
11
Stát
Spojené státy americké
Strany od
1
Strany do
12
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S107731421830393X
BibTex
@article{BUT161466, author="Jakub {Špaňhel} and Jakub {Sochor} and Roman {Juránek} and Petr {Dobeš} and Vojtěch {Bartl} and Adam {Herout}", title="Learning Feature Aggregation in Temporal Domain for Re-Identification", journal="COMPUTER VISION AND IMAGE UNDERSTANDING", year="2020", volume="192", number="11", pages="1--12", doi="10.1016/j.cviu.2019.102883", issn="1077-3142", url="https://www.sciencedirect.com/science/article/pii/S107731421830393X" }