Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Path-induced closure operators on graphs for defining digital Jordan surfaces
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the 2-adjacency graph on the digital line Z and consider the closure operators on Z^m (m a positive integer) that are induced by a special product of m copies of the introduced set of paths. We focus on the case m = 3 and show that the closure operator considered provides the digital space Z^3 with a connectedness that may be used for defining digital surfaces satisfying a Jordan surface theorem.
Klíčová slova
simple graph, path, closure operator, connectedness, digital space, digital surface, Khalimsky topology, Jordan surface theorem
Autoři
Vydáno
19. 11. 2019
ISSN
2391-5455
Periodikum
Open Mathematics
Ročník
17
Číslo
1
Stát
Polská republika
Strany od
1374
Strany do
1380
Strany počet
7
URL
https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT
BibTex
@article{BUT162077, author="Josef {Šlapal}", title="Path-induced closure operators on graphs for defining digital Jordan surfaces", journal="Open Mathematics", year="2019", volume="17", number="1", pages="1374--1380", doi="10.1515/math-2019-0121", issn="2391-5455", url="https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT" }