Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
TOMÁŠEK, P.
Originální název
Stability and Instability Regions for a Three Term Difference Equation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper discusses stability and instability properties of difference equation y(n+1)+ay(n-l+1)+by(n-l)=0 with real parameters a, b. Beside known results about its asymptotic stability conditions a deeper analysis of instability properties is introduced. An instability degree of difference equation’s solution is introduced in analogy with theory of differential equations. Instability regions of a fixed degree are introduced and described in the paper. It is shown that dislocation of instability regions of various degrees obeys some rules and qualitatively depends on parity of difference equation’s order.
Klíčová slova
Instability degree; linear difference equation; stability
Autoři
Vydáno
11. 2. 2020
Nakladatel
Springer
Místo
Cham
ISBN
978-3-030-35501-2
Kniha
Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018.
Edice
Springer Proceedings in Mathematics & Statistics
Číslo edice
312
ISSN
2194-1009
Periodikum
Ročník
Stát
Spolková republika Německo
Strany od
355
Strany do
364
Strany počet
10
BibTex
@inproceedings{BUT162607, author="Petr {Tomášek}", title="Stability and Instability Regions for a Three Term Difference Equation", booktitle="Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018.", year="2020", series="Springer Proceedings in Mathematics & Statistics", journal="Springer Proceedings in Mathematics & Statistics", volume="312", number="312", pages="355--364", publisher="Springer", address="Cham", doi="10.1007/978-3-030-35502-9\{_}16", isbn="978-3-030-35501-2", issn="2194-1009" }