Detail publikace

Stability and Instability Regions for a Three Term Difference Equation

TOMÁŠEK, P.

Originální název

Stability and Instability Regions for a Three Term Difference Equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper discusses stability and instability properties of difference equation y(n+1)+ay(n-l+1)+by(n-l)=0 with real parameters a, b. Beside known results about its asymptotic stability conditions a deeper analysis of instability properties is introduced. An instability degree of difference equation’s solution is introduced in analogy with theory of differential equations. Instability regions of a fixed degree are introduced and described in the paper. It is shown that dislocation of instability regions of various degrees obeys some rules and qualitatively depends on parity of difference equation’s order.

Klíčová slova

Instability degree; linear difference equation; stability

Autoři

TOMÁŠEK, P.

Vydáno

11. 2. 2020

Nakladatel

Springer

Místo

Cham

ISBN

978-3-030-35501-2

Kniha

Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018.

Edice

Springer Proceedings in Mathematics & Statistics

Číslo edice

312

ISSN

2194-1009

Periodikum

Springer Proceedings in Mathematics & Statistics

Ročník

312

Stát

Spolková republika Německo

Strany od

355

Strany do

364

Strany počet

10

BibTex

@inproceedings{BUT162607,
  author="Petr {Tomášek}",
  title="Stability and Instability Regions for a Three Term Difference Equation",
  booktitle="Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018.",
  year="2020",
  series="Springer Proceedings in Mathematics & Statistics",
  journal="Springer Proceedings in Mathematics & Statistics",
  volume="312",
  number="312",
  pages="355--364",
  publisher="Springer",
  address="Cham",
  doi="10.1007/978-3-030-35502-9\{_}16",
  isbn="978-3-030-35501-2",
  issn="2194-1009"
}