Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČERMÁK, J. NECHVÁTAL, L.
Originální název
On exact and discretized stability of a linear fractional delay differential equation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper discusses the problem of necessary and sufficient stability conditions for a test fractional delay differential equation and its discretization. First, we recall the existing condition for asymptotic stability of the exact equation and consider an appropriate fractional delay difference equation as its discrete counterpart. Then, using the Laplace transform method combined with the boundary locus technique, we derive asymptotic stability conditions in the discrete case as well. Since the studied fractional delay difference equation serves as a backward Euler discretization of the underlying differential equation, we discuss a related problem of numerical stability (with a negative conclusion). Also, as a by-product of our observations, a fractional analogue of the classical Levin–May stability condition is presented.
Klíčová slova
Fractional delay differential and difference equation; Asymptotic stability; Numerical stability
Autoři
ČERMÁK, J.; NECHVÁTAL, L.
Vydáno
1. 7. 2020
Nakladatel
PERGAMON-ELSEVIER SCIENCE LTD
Místo
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
ISSN
0893-9659
Periodikum
APPLIED MATHEMATICS LETTERS
Ročník
105
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
9
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0893965920300896
BibTex
@article{BUT162615, author="Jan {Čermák} and Luděk {Nechvátal}", title="On exact and discretized stability of a linear fractional delay differential equation", journal="APPLIED MATHEMATICS LETTERS", year="2020", volume="105", number="1", pages="1--9", doi="10.1016/j.aml.2020.106296", issn="0893-9659", url="https://www.sciencedirect.com/science/article/pii/S0893965920300896" }