Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NORDEBO, S. ŠTUMPF, M. IVANENKO, Y.
Originální název
A multi-resolution 4-D FFT approach to parametric boundary Integral Equations for helical structures
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper gives a report of an ongoing research to develop parametric boundary integral equations for helical structures and their application in the computation of induced currents and losses in three-phase power cables. The proposed technique is formulated in terms of the Electric Field Integral Equation (EFIE) or the Magnetic Field Integral Equation (MFIE) for a penetrable object together with the appropriate periodic Green's functions and a suitable parameterization of the helical structure. A simple and efficient numerical scheme is proposed for the computation of the impedance matrix in the Method of Moments (MoM) which is based on a multi-resolution 4-D FFT computation followed by polynomial extrapolation. Numerical examples are included demonstrating that the singular integrals have almost linear convergence and hence that linear or quadratic extrapolation can be used to yield accurate results.
Klíčová slova
computational electromagnetics; integral equations; method of moments; power cables
Autoři
NORDEBO, S.; ŠTUMPF, M.; IVANENKO, Y.
Vydáno
18. 8. 2016
Místo
Espoo, Finland
ISBN
978-1-5090-2501-5
Kniha
Proceedings of 2016 URSI International Symposium on Electromagnetic Theory
Strany od
218
Strany do
221
Strany počet
4
URL
https://ieeexplore.ieee.org/document/7571357
BibTex
@inproceedings{BUT163473, author="NORDEBO, S. and ŠTUMPF, M. and IVANENKO, Y.", title="A multi-resolution 4-D FFT approach to parametric boundary Integral Equations for helical structures", booktitle="Proceedings of 2016 URSI International Symposium on Electromagnetic Theory", year="2016", pages="218--221", address="Espoo, Finland", doi="10.1109/URSI-EMTS.2016.7571357", isbn="978-1-5090-2501-5", url="https://ieeexplore.ieee.org/document/7571357" }