Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MYŠKA, V.
Originální název
Graph convolutional neural networks for sentiment analysis
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Commonly used approaches based on deep learning for sentiment analysis task operating over data in Euclidean space. In contrast with them, this paper presents, a novel approach for sentiment analysis task based on a graph convolutional neural networks (GCNs) operating with data in Non-Euclidean space. Text data processed by the approach have to be converted to a graph structure. Our GCNs models have been trained on 25 000 data samples and evaluated 5 000 samples. The Yelp data set has been used. The experiment is focused on polarity sentiment analysis task. Nevertheless, a relatively small training data set has been used, our best model achieved 86.12% accuracy.
Klíčová slova
sentiment analysis, graph neural networks, deep learning
Autoři
Vydáno
23. 4. 2020
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5867-3
Kniha
Proceedings I of the 26th Conference STUDENT EEICT 2020
Strany od
340
Strany do
344
Strany počet
5
BibTex
@inproceedings{BUT164699, author="Vojtěch {Myška}", title="Graph convolutional neural networks for sentiment analysis", booktitle="Proceedings I of the 26th Conference STUDENT EEICT 2020", year="2020", pages="340--344", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5867-3" }