Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÁ, P. VIČAR, T. RONZHINA, M. HEJČ, J. KOLÁŘOVÁ, J.
Originální název
Deep-Learning Premature Contraction Localization in 12-lead ECG From Whole Signal Annotations
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Since common electrocardiography (ECG) diagnostics approaches are time-consuming and arrhythmia-type sensitive, deep-learning methods are state-of-the-art for their detection accuracy. However, premature ventricular contractions' (PVC) localization via common deep-learning approaches requires large training set, therefore Multiple Instance Learning (MIL) framework was applied, where model is trained from whole-signal annotations. Proposed MIL framework is based on 1D Convolutional Neural Network (CNN), with global max-pooling in the last layer. The detection of PVCs' positions was done by the peak detector with specified parameters - threshold, minimal distance and peak prominence. Our method was tested on database containing 1590 ECGs, including 672 signals with PVCs. Dice coefficient reaches 0.947. This simple deep-learning method for the localization of PVC achieves a promising performance while being trainable from the whole-signal annotations instead of positional labels.
Klíčová slova
ECG, electrocardiogram, arrhythmia, localization, global, annotation, PVC, premature ventricular contractions
Autoři
NOVOTNÁ, P.; VIČAR, T.; RONZHINA, M.; HEJČ, J.; KOLÁŘOVÁ, J.
Vydáno
30. 9. 2020
Nakladatel
IEEE
Místo
NEW YORK
ISBN
978-1-7281-7382-5
Kniha
Computing in Cardiology 2020
Edice
47
Číslo edice
1
ISSN
2325-8861
Periodikum
Compuing in Cardiology 2013
Stát
Španělské království
Strany od
Strany do
4
Strany počet
URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9344059
BibTex
@inproceedings{BUT165491, author="Petra {Novotná} and Tomáš {Vičar} and Marina {Filipenská} and Jakub {Hejč} and Jana {Kolářová}", title="Deep-Learning Premature Contraction Localization in 12-lead ECG From Whole Signal Annotations", booktitle="Computing in Cardiology 2020", year="2020", series="47", journal="Compuing in Cardiology 2013", number="1", pages="1--4", publisher="IEEE", address="NEW YORK", doi="10.22489/CinC.2020.193", isbn="978-1-7281-7382-5", issn="2325-8861", url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9344059" }