Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KISELA, T.
Originální název
On dynamical systems with nabla half derivative on time scales
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper is devoted to study of dynamical systems involving nabla half derivative on an arbitrary time scale. We prove existence and uniqueness of the solution of such system supplied with a suitable initial condition. Both Riemann–Liouville and Caputo approaches to noninteger-order derivatives are covered. Under special conditions we present an explicit form of the solution involving a time scales analogue of Mittag–Leffler function. Also an algorithm for solving of such problems on isolated time scales is established. Moreover, we show that half power functions are positive and decreasing with respect to t−s on an arbitrary time scale.
Klíčová slova
Fractional calculus; time scales; nabla half derivative; dynamical systems; Mittag-Leffler function; existence and uniqueness
Autoři
Vydáno
23. 10. 2020
Nakladatel
Springer
ISSN
1660-5446
Periodikum
Mediterranean Journal of Mathematics
Ročník
17
Číslo
187
Stát
Švýcarská konfederace
Strany od
1
Strany do
19
Strany počet
URL
https://link.springer.com/article/10.1007/s00009-020-01629-w
BibTex
@article{BUT166026, author="Tomáš {Kisela}", title="On dynamical systems with nabla half derivative on time scales", journal="Mediterranean Journal of Mathematics", year="2020", volume="17", number="187", pages="1--19", doi="10.1007/s00009-020-01629-w", issn="1660-5446", url="https://link.springer.com/article/10.1007/s00009-020-01629-w" }