Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BEREZOVSKI, V. CHEREVKO, Y. HINTERLEITNER, I. PEŠKA, P.
Originální název
Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
Klíčová slova
geodesic mapping; space with an affine connection; m-symmetric space; m-Ricci-symmetric space
Autoři
BEREZOVSKI, V.; CHEREVKO, Y.; HINTERLEITNER, I.; PEŠKA, P.
Vydáno
1. 9. 2020
Nakladatel
MDPI
Místo
Basel
ISSN
2227-7390
Periodikum
Mathematics
Ročník
8
Číslo
9
Stát
Švýcarská konfederace
Strany od
1
Strany do
13
Strany počet
URL
https://www.mdpi.com/2227-7390/8/9/1560
Plný text v Digitální knihovně
http://hdl.handle.net/11012/195701
BibTex
@article{BUT166070, author="Vladimir {Berezovski} and Yevhen {Cherevko} and Irena {Hinterleitner} and Patrik {Peška}", title="Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces", journal="Mathematics", year="2020", volume="8", number="9", pages="1--13", doi="10.3390/math8091560", issn="2227-7390", url="https://www.mdpi.com/2227-7390/8/9/1560" }