Detail publikace

Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces

BEREZOVSKI, V. CHEREVKO, Y. HINTERLEITNER, I. PEŠKA, P.

Originální název

Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.

Klíčová slova

geodesic mapping; space with an affine connection; m-symmetric space; m-Ricci-symmetric space

Autoři

BEREZOVSKI, V.; CHEREVKO, Y.; HINTERLEITNER, I.; PEŠKA, P.

Vydáno

1. 9. 2020

Nakladatel

MDPI

Místo

Basel

ISSN

2227-7390

Periodikum

Mathematics

Ročník

8

Číslo

9

Stát

Švýcarská konfederace

Strany od

1

Strany do

13

Strany počet

13

URL

Plný text v Digitální knihovně

BibTex

@article{BUT166070,
  author="Vladimir {Berezovski} and Yevhen {Cherevko} and Irena {Hinterleitner} and Patrik {Peška}",
  title="Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces",
  journal="Mathematics",
  year="2020",
  volume="8",
  number="9",
  pages="1--13",
  doi="10.3390/math8091560",
  issn="2227-7390",
  url="https://www.mdpi.com/2227-7390/8/9/1560"
}