Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, L. NOVÁK, D.
Originální název
On Taylor series expansion for statistical moments of functions of correlated random variables
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper is focused on reliability analysis of time-consuming mathematical models utilizing approximation in form of Taylor series expansion. Statistical analysis is crucial part of reliability analysis of structures but it is still challenging to analyze time-consuming mathematical models, e.g. represented by finite element method in implicit form. Efficient alternative is an approximation of original model by explicit function in specific form. The paper is focused on approximation by Taylor series expansion for statistical analysis of functions of random variables. Although it is common to use Taylor series expansion for functions of uncorrelated random variables, it is challenging to utilize Taylor series for correlated variables and highly non-linear functions. Therefore, possibilities and pitfalls of such approach are herein discussed from engineers point of view.
Klíčová slova
Taylor series expansion, semi-probabilistic approach
Autoři
NOVÁK, L.; NOVÁK, D.
Vydáno
25. 11. 2020
Nakladatel
American Institute of Physics
Místo
New York, USA
ISBN
978-0-7354-4025-8
Kniha
AIP Conference Proceedings
Číslo edice
2293
ISSN
0094-243X
Periodikum
AIP conference proceedings
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
https://aip.scitation.org/doi/10.1063/5.0026856
BibTex
@inproceedings{BUT166175, author="Lukáš {Novák} and Drahomír {Novák}", title="On Taylor series expansion for statistical moments of functions of correlated random variables", booktitle="AIP Conference Proceedings", year="2020", journal="AIP conference proceedings", number="2293", pages="1--4", publisher="American Institute of Physics", address="New York, USA", doi="10.1063/5.0026856", isbn="978-0-7354-4025-8", issn="0094-243X", url="https://aip.scitation.org/doi/10.1063/5.0026856" }