Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HASLINGER, J. KUČERA, R. SASSI, T. ŠÁTEK, V.
Originální název
Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper deals with the numerical realization of the 3D Stokes flow subject to threshold slip boundary conditions. The weak velocity-pressure formulation leads to an inequality type problem that is approximated by a mixed finite element method. The resulting algebraic system is non-smooth. Besides the pressure, three additional Lagrange multipliers are introduced: the discrete normal stress releasing the impermeability condition and two discrete shear stresses regularizing the non-smooth slip term. Eliminating the discrete velocity component we obtain the minimization problem for the smooth functional, expressed in terms of the pressure, the normal, and the shear stresses. This problem is solved either by a path following variant of the interior point method or by the semi-smooth Newton method. Numerical scalability is illustrated by computational experiments.
Klíčová slova
Stokes problem, Stick-slip boundary conditions, Interior-point method, Semi-smooth Newton method
Autoři
HASLINGER, J.; KUČERA, R.; SASSI, T.; ŠÁTEK, V.
Vydáno
9. 11. 2021
ISSN
0378-4754
Periodikum
Mathematics and Computers in Simulation
Ročník
2021
Číslo
189
Stát
Nizozemsko
Strany od
191
Strany do
206
Strany počet
16
URL
https://www.sciencedirect.com/science/article/pii/S0378475420304705
BibTex
@article{BUT168554, author="Jaroslav {Haslinger} and Radek {Kučera} and Taoufik {Sassi} and Václav {Šátek}", title="Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D", journal="Mathematics and Computers in Simulation", year="2021", volume="2021", number="189", pages="191--206", doi="10.1016/j.matcom.2020.12.015", issn="0378-4754", url="https://www.sciencedirect.com/science/article/pii/S0378475420304705" }
Dokumenty
main.pdf