Detail publikace

On stability of delayed differential systems of arbitrary non-integer order

KISELA, T.

Originální název

On stability of delayed differential systems of arbitrary non-integer order

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

This paper summarizes and extends known results on qualitative behavior of solutions of autonomous fractional differential systems with a time delay. It utilizes two most common definitions of fractional derivative, Riemann–Liouville and Caputo one, for which optimal stability conditions are formulated via position of eigenvalues in the complex plane. Our approach covers differential systems of any non-integer orders of the derivative. The differences in stability and asymptotic properties of solutions induced by the type of derivative are pointed out as well.

Klíčová slova

fractional delay differential system; stability; asymptotic behavior; Riemann-Liouville derivative; Caputo derivative

Autoři

KISELA, T.

Vydáno

30. 6. 2020

ISSN

1805-3610

Periodikum

Mathematics for applications

Ročník

9

Číslo

1

Stát

Česká republika

Strany od

31

Strany do

42

Strany počet

12

URL

BibTex

@article{BUT169633,
  author="Tomáš {Kisela}",
  title="On stability of delayed differential systems of arbitrary non-integer order",
  journal="Mathematics for applications",
  year="2020",
  volume="9",
  number="1",
  pages="31--42",
  doi="10.13164/ma.2020.03",
  issn="1805-3610",
  url="http://ma.fme.vutbr.cz/archiv/9_1/ma_9_1_kisela_final.pdf"
}