Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KISELA, T.
Originální název
On stability of delayed differential systems of arbitrary non-integer order
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
This paper summarizes and extends known results on qualitative behavior of solutions of autonomous fractional differential systems with a time delay. It utilizes two most common definitions of fractional derivative, Riemann–Liouville and Caputo one, for which optimal stability conditions are formulated via position of eigenvalues in the complex plane. Our approach covers differential systems of any non-integer orders of the derivative. The differences in stability and asymptotic properties of solutions induced by the type of derivative are pointed out as well.
Klíčová slova
fractional delay differential system; stability; asymptotic behavior; Riemann-Liouville derivative; Caputo derivative
Autoři
Vydáno
30. 6. 2020
ISSN
1805-3610
Periodikum
Mathematics for applications
Ročník
9
Číslo
1
Stát
Česká republika
Strany od
31
Strany do
42
Strany počet
12
URL
http://ma.fme.vutbr.cz/archiv/9_1/ma_9_1_kisela_final.pdf
BibTex
@article{BUT169633, author="Tomáš {Kisela}", title="On stability of delayed differential systems of arbitrary non-integer order", journal="Mathematics for applications", year="2020", volume="9", number="1", pages="31--42", doi="10.13164/ma.2020.03", issn="1805-3610", url="http://ma.fme.vutbr.cz/archiv/9_1/ma_9_1_kisela_final.pdf" }