Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ANDRIUSHCHENKO, R. ČEŠKA, M. ABATE, A. KWIATKOWSKA, M.
Originální název
Adaptive formal approximations of Markov chains
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We explore formal approximation techniques for Markov chains based on state-space reduction that aim at improving the scalability of the analysis, while providing formal bounds on the approximation error. We first present a comprehensive survey of existing state-reduction techniques based on clustering or truncation. Then, we extend existing frameworks for aggregation-based analysis of Markov chains by allowing them to handle chains with an arbitrary structure of the underlying state space - including continuous-time models - and improve upon existing bounds on the approximation error. Finally, we introduce a new hybrid scheme that utilises both aggregation and truncation of the state space and provides the best available approach for approximating continuous-time models. We conclude with a broad and detailed comparative evaluation of existing and new approximation techniques and investigate how different methods handle various Markov models. The results also show that the introduced hybrid scheme significantly outperforms existing approaches and provides a speedup of the analysis up to a factor of 30 with the corresponding approximation error bounded within 0.1%.
Klíčová slova
Markov models, Probabilistic model checking, Approximation techniques, Adaptive aggregation
Autoři
ANDRIUSHCHENKO, R.; ČEŠKA, M.; ABATE, A.; KWIATKOWSKA, M.
Vydáno
10. 5. 2021
ISSN
0166-5316
Periodikum
PERFORMANCE EVALUATION
Ročník
148
Číslo
102207
Stát
Nizozemsko
Strany od
1
Strany do
23
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0166531621000249
BibTex
@article{BUT171485, author="Roman {Andriushchenko} and Milan {Češka} and Alessandro {Abate} and Marta {Kwiatkowska}", title="Adaptive formal approximations of Markov chains", journal="PERFORMANCE EVALUATION", year="2021", volume="148", number="102207", pages="1--23", doi="10.1016/j.peva.2021.102207", issn="0166-5316", url="https://www.sciencedirect.com/science/article/pii/S0166531621000249" }