Detail publikace

Adaptive formal approximations of Markov chains

ANDRIUSHCHENKO, R. ČEŠKA, M. ABATE, A. KWIATKOWSKA, M.

Originální název

Adaptive formal approximations of Markov chains

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We explore formal approximation techniques for Markov chains based on state-space reduction that aim at improving the scalability of the analysis, while providing formal bounds on the approximation error. We first present a comprehensive survey of existing state-reduction techniques based on clustering or truncation. Then, we extend existing frameworks for aggregation-based analysis of Markov chains by allowing them to handle chains with an arbitrary structure of the underlying state space - including continuous-time models - and improve upon existing bounds on the approximation error. Finally, we introduce a new hybrid scheme that utilises both aggregation and truncation of the state space and provides the best available approach for approximating continuous-time models. We conclude with a broad and detailed comparative evaluation of existing and new approximation techniques and investigate how different methods handle various Markov models. The results also show that the introduced hybrid scheme significantly outperforms existing approaches and provides a speedup of the analysis up to a factor of 30 with the corresponding approximation error bounded within 0.1%.

Klíčová slova

Markov models,  Probabilistic model checking,  Approximation techniques,  Adaptive aggregation

Autoři

ANDRIUSHCHENKO, R.; ČEŠKA, M.; ABATE, A.; KWIATKOWSKA, M.

Vydáno

10. 5. 2021

ISSN

0166-5316

Periodikum

PERFORMANCE EVALUATION

Ročník

148

Číslo

102207

Stát

Nizozemsko

Strany od

1

Strany do

23

Strany počet

23

URL

BibTex

@article{BUT171485,
  author="Roman {Andriushchenko} and Milan {Češka} and Alessandro {Abate} and Marta {Kwiatkowska}",
  title="Adaptive formal approximations of Markov chains",
  journal="PERFORMANCE EVALUATION",
  year="2021",
  volume="148",
  number="102207",
  pages="1--23",
  doi="10.1016/j.peva.2021.102207",
  issn="0166-5316",
  url="https://www.sciencedirect.com/science/article/pii/S0166531621000249"
}