Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČERMÁK, J. NECHVÁTAL, L.
Originální název
On a problem of linearized stability for fractional difference equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper discusses the problem of linearized stability for nonlinear fractional difference equations. Computational methods based on appropriate linearization theorem are standardly applied in bifurcation analysis of dynamical systems. However, in the case of fractional discrete systems, a theoretical background justifying its use is still missing. Therefore, the main goal of this paper is to fill in the gap. We consider a general autonomous system of fractional difference equations involving the backward Caputo fractional difference operator and prove that any equilibrium of this system is asymptotically stable if the zero solution of the corresponding linearized system is asymptotically stable. Moreover, these asymptotic stability conditions for equilibria of the system are described via location of all the characteristic roots in a specific area of the complex plane. In the planar case, these conditions are given even explicitly in terms of trace and determinant of the appropriate Jacobi matrix. The results are applied to a fractional predator-prey model and the fractional Lorenz model. Related experiments are supported by a numerical code that is appended as well
Klíčová slova
Fractional differential and difference equation; Asymptotic stability; Linearization theorem; Bifurcation
Autoři
ČERMÁK, J.; NECHVÁTAL, L.
Vydáno
5. 4. 2021
Nakladatel
SPRINGER
Místo
DORDRECHT
ISSN
1573-269X
Periodikum
NONLINEAR DYNAMICS
Ročník
104
Číslo
2
Stát
Spojené státy americké
Strany od
1253
Strany do
1267
Strany počet
15
URL
https://link.springer.com/article/10.1007/s11071-021-06372-9
BibTex
@article{BUT171521, author="Jan {Čermák} and Luděk {Nechvátal}", title="On a problem of linearized stability for fractional difference equations", journal="NONLINEAR DYNAMICS", year="2021", volume="104", number="2", pages="1253--1267", doi="10.1007/s11071-021-06372-9", issn="1573-269X", url="https://link.springer.com/article/10.1007/s11071-021-06372-9" }