Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J., OČENÁŠEK, J., JAROŠ, J.
Originální název
Advanced Bayesian Optimization Algorithms Applied in Decomposition Problems
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the usage of Bayesian optimization algorithm (BOA) and its advanced variants for solving complex NP-complete combinatorial optimization problems. We focus on the hypergraph-partitioning problem and multiprocessor scheduling problem, which belong to the class of frequently solved decomposition tasks. One of the goals is to use these problems to experimentally compare the performance of the recently proposed Mixed Bayesian Optimization Algorithm (MBOA) with the performance of several other evolutionary algorithms. BOA algorithms are based on the estimation and sampling of probabilistic model unlike classical genetic algorithms. We also propose the utilization of prior knowledge about the structure of a task graph to increase the convergence speed and the quality of solutions. The performance of KMBOA algorithm on the multiprocessor scheduling problem is empirically investigated and confirmed.
Klíčová slova
Bayesian optimization algorithm, hypergraph-partitioning problem, multiprocessor scheduling problem, specific problem knowledge
Autoři
Rok RIV
2004
Vydáno
28. 6. 2004
Nakladatel
IEEE Computer Society
Místo
Los Alamitos
ISBN
0-7695-2125-8
Kniha
Proceedings of ECBS 2004
Strany od
102
Strany do
111
Strany počet
10
BibTex
@inproceedings{BUT17153, author="Josef {Schwarz} and Jiří {Očenášek} and Jiří {Jaroš}", title="Advanced Bayesian Optimization Algorithms Applied in Decomposition Problems", booktitle="Proceedings of ECBS 2004", year="2004", pages="102--111", publisher="IEEE Computer Society", address="Los Alamitos", isbn="0-7695-2125-8" }