Detail publikace

A New Formulation of Maxwell’s Equations

FIALOVÁ, S. POCHYLÝ, F.

Originální název

A New Formulation of Maxwell’s Equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.

Klíčová slova

Maxwell’s equations; divergence theorem; integral form; magnetism; optimization; analysis

Autoři

FIALOVÁ, S.; POCHYLÝ, F.

Vydáno

12. 5. 2021

Nakladatel

MDPI

ISSN

2073-8994

Periodikum

Symmetry

Ročník

13

Číslo

5

Stát

Švýcarská konfederace

Strany od

868

Strany do

868

Strany počet

12

URL

Plný text v Digitální knihovně

BibTex

@article{BUT171551,
  author="Simona {Fialová} and František {Pochylý}",
  title="A New Formulation of Maxwell’s Equations",
  journal="Symmetry",
  year="2021",
  volume="13",
  number="5",
  pages="868--868",
  doi="10.3390/sym13050868",
  issn="2073-8994",
  url="https://www.mdpi.com/2073-8994/13/5/868"
}