Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FIALOVÁ, S. POCHYLÝ, F.
Originální název
A New Formulation of Maxwell’s Equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.
Klíčová slova
Maxwell’s equations; divergence theorem; integral form; magnetism; optimization; analysis
Autoři
FIALOVÁ, S.; POCHYLÝ, F.
Vydáno
12. 5. 2021
Nakladatel
MDPI
ISSN
2073-8994
Periodikum
Symmetry
Ročník
13
Číslo
5
Stát
Švýcarská konfederace
Strany od
868
Strany do
Strany počet
12
URL
https://www.mdpi.com/2073-8994/13/5/868
Plný text v Digitální knihovně
http://hdl.handle.net/11012/196763
BibTex
@article{BUT171551, author="Simona {Fialová} and František {Pochylý}", title="A New Formulation of Maxwell’s Equations", journal="Symmetry", year="2021", volume="13", number="5", pages="868--868", doi="10.3390/sym13050868", issn="2073-8994", url="https://www.mdpi.com/2073-8994/13/5/868" }