Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Fózer, D., Tóth, A.J., Varbanov, P.S., Klemeš, J.J., Mizsey, P.
Originální název
Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Global warming and climate change urge the deployment of close carbon-neutral technologies via the synthesis of low-carbon emission fuels and materials. An efficient intermediate product of such technologies is the biomethanol produced from biomass. Microalgae based technologies offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value-added fuel gas mixtures by applying thermochemical processes. In this study, the environmental and economic performances of biomethanol production are examined using artificial neural networks (ANNs) for the modelling of catalytic and noncatalytic hydrothermal gasification (HTG). Levenberg-Marquardt and Bayesian Regularisation algorithms are applied to describe the thermocatalytic transformation involving various types of feedstocks (biomass and wastes) in the training process. The relationship between the elemental composition of the feedstock, HTG reaction conditions (380 ?C & ndash;717 ?C, 22.5 MPa & ndash;34.4 MPa, 1 & ndash;30 wt% biomass-to-water ratio, 0.3 min & ndash;60.0 min residence time, up to 5.5 wt% NaOH catalyst load) and fuel gas yield & composition are determined for Chlorella vulgaris strain. The ideal ANN topology is characterised by high training performance (MSE = 5.680E-01) and accuracies (R-2 >= 0.965) using 2 hidden layers with 17-17 neurons. The process flowsheeting of biomass-to-methanol valorisation is performed using ASPEN Plus software involving the ANN-based HTG fuel gas profiles. Cradle-to-gate life cycle assessment (LCA) is carried out to evaluate the climate change potential of biomethanol production alternatives. It is obtained that high greenhouse gas (GHG) emission reduction (-725 kg CO2,eq (t CH3OH)-1) can be achieved by enriching the HTG syngas composition with H2 using variable renewable electricity sources. The utilisation of hydrothermal gasification for the synthesis of biomethanol is found to be a favourable process alternative due to the (i) variable synthesis gas composition, (ii) heat integration, and (iii) GHG emission mitigation possibilities.
Klíčová slova
Artificial neural networks; Biomethanol; Cost analysis; Hydrothermal gasification; Life cycle assessment; Power-to-Liquid
Autoři
Vydáno
10. 10. 2021
Nakladatel
Elsevier
Místo
ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
ISSN
0959-6526
Periodikum
Journal of Cleaner Production
Ročník
318
Číslo
1
Stát
Spojené království Velké Británie a Severního Irska
Strany od
128606
Strany do
Strany počet
19
URL
https://www.sciencedirect.com/science/article/pii/S0959652621028110
Plný text v Digitální knihovně
http://hdl.handle.net/11012/203075
BibTex
@article{BUT172449, author="Dániel {Fózer} and András József {Tóth} and Petar Sabev {Varbanov} and Jiří {Klemeš} and Peter {Mizsey}", title="Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network", journal="Journal of Cleaner Production", year="2021", volume="318", number="1", pages="128606--128606", doi="10.1016/j.jclepro.2021.128606", issn="0959-6526", url="https://www.sciencedirect.com/science/article/pii/S0959652621028110" }