Detail publikace

Comparison of Multiple Reinforcement Learning and Deep Reinforcement Learning Methods for the Task Aimed at Achieving the Goal

PARÁK, R. MATOUŠEK, R.

Originální název

Comparison of Multiple Reinforcement Learning and Deep Reinforcement Learning Methods for the Task Aimed at Achieving the Goal

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) methods are a promising approach to solving complex tasks in the real world with physical robots. In this paper, we compare several reinforcement learning (Q-Learning, SARSA) and deep reinforcement learning (Deep Q-Network, Deep Sarsa) methods for a task aimed at achieving a specific goal using robotics arm UR3. The main optimization problem of this experiment is to find the best solution for each RL/DRL scenario and minimize the Euclidean distance accuracy error and smooth the resulting path by the Bézier spline method. The simulation and real word applications are controlled by the Robot Operating System (ROS). The learning environment is implemented using the OpenAI Gym library which uses the RVIZ simulation tool and the Gazebo 3D modeling tool for dynamics and kinematics.

Klíčová slova

Reinforcement Learning, Deep neural network, Motion planning, Bézier spline, Robotics, UR3

Autoři

PARÁK, R.; MATOUŠEK, R.

Vydáno

21. 6. 2021

Nakladatel

Brno University of Technology

Místo

Brno University of Technology

ISSN

1803-3814

Periodikum

Mendel Journal series

Ročník

27

Číslo

1

Stát

Česká republika

Strany od

1

Strany do

8

Strany počet

8

URL

BibTex

@article{BUT172507,
  author="Roman {Parák} and Radomil {Matoušek}",
  title="Comparison of Multiple Reinforcement Learning and Deep Reinforcement Learning Methods for the Task Aimed at Achieving the Goal",
  journal="Mendel Journal series",
  year="2021",
  volume="27",
  number="1",
  pages="1--8",
  doi="10.13164/mendel.2021.1.001",
  issn="1803-3814",
  url="https://mendel-journal.org"
}