Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠEBESTOVÁ, M. DOSTÁL, P.
Originální název
The choice of the type of image for graphical processing of input data for corporate bankruptcy prediction using CNN
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the application of Convolutional Neural Networks (CNN) for the bankruptcy prediction of firms in the Czech Republic. It proposes several variants based on the GoogLeNet architecture that predict the bankruptcy of a company 1 to 3 years in advance. The inputs of the model are financial ratios whose values are converted into several types of images. The various types of images are searched to improve the accuracy of company bankruptcy prediction and the right type of image is found. CNN networks can effectively distinguish between active and bankrupt enterprises. The predictive accuracy of the best proposed model ranges between 85 and 93% (depending on the number of years before bankruptcy).
Klíčová slova
bankruptcy prediction, convolutional neural network, financial indicators
Autoři
ŠEBESTOVÁ, M.; DOSTÁL, P.
Vydáno
7. 9. 2021
Nakladatel
VSB - Technical University of Ostrava
Místo
Ostrava
ISBN
978-80-248-4548-7
Kniha
Financial Management of Firms and Financial Institutions
Strany od
164
Strany do
172
Strany počet
9
BibTex
@inproceedings{BUT172817, author="Monika {Šebestová} and Petr {Dostál}", title="The choice of the type of image for graphical processing of input data for corporate bankruptcy prediction using CNN", booktitle="Financial Management of Firms and Financial Institutions", year="2021", pages="164--172", publisher="VSB - Technical University of Ostrava", address="Ostrava", isbn="978-80-248-4548-7" }