Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FRIML, D. KOZUBÍK, M. VÁCLAVEK, P.
Originální název
On Improving TLS Identification Results Using Nuisance Variables with Application on PMSM
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This article presents a novel total least-squares based method for errors-in-variables model identification with a known structure. This method considers the errors of both input and output variables and thus achieves more accurate estimates compared to conventional ordinary least-squares based methods. The introduced method consists of two recursive total least-squares algorithms connected in a hierarchical structure, which allows for exploitation of nuisance variables and a priori known structure of the identified model. The total least-squares (TLS) method is introduced, and a new “nuisance improved hierarchical total least-squares” (nHTLS) method is derived. Its properties are discussed and proved by simulations. Furthermore, the method is applied in a practical experiment consisting of the state-space identification of the permanent magnet synchronous motor (PMSM). The introduced method is compared with TLS and proven to provide measurably superior dynamical behavior and smaller estimation error of results.
Klíčová slova
Total Least-Squares, Errors-in-Variables, Hierarchical Total Least-Squares, Nuisance Variables, PMSM Identification
Autoři
FRIML, D.; KOZUBÍK, M.; VÁCLAVEK, P.
Vydáno
13. 11. 2021
Nakladatel
IEEE
ISBN
978-1-6654-3554-3
Kniha
IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society
Strany od
1
Strany do
6
Strany počet
URL
https://ieeexplore.ieee.org/document/9589402
Plný text v Digitální knihovně
http://hdl.handle.net/11012/202278
BibTex
@inproceedings{BUT173146, author="Dominik {Friml} and Michal {Kozubík} and Pavel {Václavek}", title="On Improving TLS Identification Results Using Nuisance Variables with Application on PMSM", booktitle="IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society", year="2021", pages="1--6", publisher="IEEE", doi="10.1109/IECON48115.2021.9589402", isbn="978-1-6654-3554-3", url="https://ieeexplore.ieee.org/document/9589402" }