Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Beisekenov, N.A., Anuarbekov, T.B., Sadenova, M.A., Varbanov, P.S., Klemeš, J.J., Wang, J.
Originální název
Machine learning model identification for forecasting of soya crop yields in Kazakhstan
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this article, using the example of soybean production in Kazakhstan, the features of using a new neuroprogramming method for analyzing data from field experiments and predicting yield are considered. It is shown that using historical statistics over several years, the program can create a trained model that is useful for predicting future values (profitability charts, anomalies, efficiency). The average error of the created neural yield model is 0.00894. The correlation coefficient of the developed neuromodel is 0.9602; determination coefficient - 0.9887. Based on the results of the work, a forecast of the yield of agricultural crops was obtained and recommendations were formulated to increase the yield of soybeans. © 2021 University of Split, FESB.
Klíčová slova
Machine learning; Neural networks; Time-series rhythm; Vegetation index; Yield forecast
Autoři
Vydáno
8. 9. 2021
Nakladatel
Institute of Electrical and Electronics Engineers Inc.
ISBN
9789532901122
Kniha
2021 6th International Conference on Smart and Sustainable Technologies (SpliTech)
Strany od
173101
Strany do
Strany počet
13
BibTex
@inproceedings{BUT173228, author="Petar Sabev {Varbanov} and Jiří {Klemeš} and Jin {Wang}", title="Machine learning model identification for forecasting of soya crop yields in Kazakhstan", booktitle="2021 6th International Conference on Smart and Sustainable Technologies (SpliTech)", year="2021", pages="173101--173101", publisher="Institute of Electrical and Electronics Engineers Inc.", doi="10.23919/SpliTech52315.2021.9566376", isbn="9789532901122" }