Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VIČAR, T. NOVOTNÁ, P. HEJČ, J. JANOUŠEK, O. RONZHINA, M.
Originální název
Cardiac Abnormalities Recognition in ECG Using a Convolutional Network with Attention and Input with an Adaptable Number of Leads
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, we present an algorithm for automatically identifying the cardiac abnormalities in ECG records with the various number of leads. The algorithm is based on the modified ResNet convolutional neural network with the attention layer. The network input is modified to allow using a single network for different lead subsets. In an official phase challenge entry, our BUTTeam reached the 15th place. In our test challenge entry, we have achieved 0.470, 0.460, 0.470, 0.460, and 0.460 of the challenge metric for 12, 6, 4, 3 and 2 leads with ranking 14th, 14th, 11th, 15th and 11th place, respectively. From additional evaluation of other lead subsets, the leads representing a common heart axis orientation achieved the best detection results. However, all lead subsets performed very similarly.
Klíčová slova
arrhythmias; cardiac abnormalities; convolutional neural network; attention layer; ResNet
Autoři
VIČAR, T.; NOVOTNÁ, P.; HEJČ, J.; JANOUŠEK, O.; RONZHINA, M.
Vydáno
18. 11. 2021
Nakladatel
Computing in Cardiology 2021
Místo
Brno
ISSN
2325-887X
Periodikum
Computing in Cardiology
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
https://www.cinc.org/archives/2021/pdf/CinC2021-047.pdf
BibTex
@inproceedings{BUT173258, author="Tomáš {Vičar} and Petra {Novotná} and Jakub {Hejč} and Oto {Janoušek} and Marina {Filipenská}", title="Cardiac Abnormalities Recognition in ECG Using a Convolutional Network with Attention and Input with an Adaptable Number of Leads", booktitle="Computing in Cardiology 2021", year="2021", journal="Computing in Cardiology", pages="1--4", publisher="Computing in Cardiology 2021", address="Brno", doi="10.22489/CinC.2021.047", issn="2325-887X", url="https://www.cinc.org/archives/2021/pdf/CinC2021-047.pdf" }